
Hands-on Introduction to Computers & Programming – using DEBUG and the 8086 Microprocessor July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Objective. This worksheet introduces the Intel 8086 microprocessor and DEBUG as part of a learning journey in

Computer Architecture and Programming. Discovery is facilitated by guided explorations and deep dives into

illustrative examples.

Why Debug? Debug is essentially a monitor program, and similar programs/utilities will be the first thing you will

look for when programming / interacting with any computer, especially a microcontroller (MCU), an embedded

system, or robotics. (see Ch.17 of 8051/8052 MCU, Steiner, 2005)

Contents. Appendix 1 will get you started getting debug (the program) and DOSBox (a dos emulator for x86).

DOSBox is required to run debug on recent Windows operating systems (Win7 or later). Appendix 3 is a reference

for Debug commands.

1. What is Debug, and why are we using it? [3]

Debug is an interactive assembler, disassembler, and tracer written by Tim Paterson in 1980 to diagnose/maintain

the QDOS (quick dos) 16-bit operating system he was building for Seattle Computer Products targeted to the Intel

8086 microprocessor chip with translation compatibility to Gary Kildall’s flagship operating system CP/M. As it is

interactive, Debug is a great way to learn/teach elementary computer architecture, and introduce assembly

language programming.

 Why did Debug have such a long life? The DOS operating system and the Intel 8086/8 chips it ran on became

synonymous with computing in the age of microcomputers, with IBM choosing the 8088 and MS-DOS for its flagship

microcomputer IBM 5150. When Patterson moved to Microsoft in 1981, he brought QDOS (then called 86-DOS)

program with him, and this was included in MS-DOS 1.00. It has been part of Windows through Windows XP a

remarkable 28-year life (1981-2009) for a utility! Debug finally disappeared from Windows in 2009 when Windows 7

replaced WinXP widely.

 Both Intel and Microsoft have continued to build on these foundations, maintaining backwards compatibility with

legacy software and extending the value provided this architecture, even as additional capabilities were added.

Additional Reading

[1] The Chip that Changed Computing: https://plus.google.com/u/0/+AssadEbrahim/posts/HGHFHqW5KK4

[2] Saving Windows from the OS/2 Bulldozer: https://plus.google.com/u/0/+AssadEbrahim/posts/ADq2eexcQzx

[3] The Inside Story of how TI (TMS9900) and Motorola (68000) lost the Microprocessor Great Race.

https://plus.google.com/u/0/+AssadEbrahim/posts/WATrWkCm4WD

[4] CP/M (Gary Kildall, Digital Research, formerly from Intel), QDOS (Tim Paterson, Seattle Computer Products), and

MS-DOS (Bill Gates, Tim Paterson, Microsoft) – the story of how Microsoft went from selling an MS-BASIC runtime

for IBMs first Micro to selling an operating system to IBM that it did not have, but which went on to crush both CP/M

and OS/2. https://www.theregister.co.uk/2007/07/30/msdos_paternity_suit_resolved/

[5] Origins of DOS, Patterson, 1983 http://www.patersontech.com/dos/byte%E2%80%93inside-look.aspx

[6] The Roots of DOS & Tim Paterson, 1983, Softalk, http://www.patersontech.com/DOS/softalk.aspx

Debug – Getting Started

Start debug. If you’re on a Windows machine newer than WinXP, you’ll need to run DOSBox emulator, and then use

the WinNT copy of debug.exe (see Appendix 1 for DOSBox setup and Appendix 2 to download debug).

At the command prompt, type debug.

You’re now in debug with a – prompt.

https://plus.google.com/u/0/+AssadEbrahim/posts/HGHFHqW5KK4
https://plus.google.com/u/0/+AssadEbrahim/posts/ADq2eexcQzx
https://plus.google.com/u/0/+AssadEbrahim/posts/WATrWkCm4WD
https://www.theregister.co.uk/2007/07/30/msdos_paternity_suit_resolved/
http://www.patersontech.com/dos/byte%E2%80%93inside-look.aspx
http://www.patersontech.com/DOS/softalk.aspx

Hands-on Introduction to Computers & Programming – using DEBUG and the 8086 Microprocessor July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Learn by Doing - Tutorial #1 Follow the instructions provided below and work through the tutorial.

In this section you will use Debug to learn about how your computer works, inspect and trace program code, and

write and debug small machine language / assembly language programs.

What is a programmable computer?

A programmable computer is a machine that takes instructions from a user (a program) and executes them. The

machine itself is an electric/electronic collection of registers, memory, input/output capability, and processing unit

(ALU or CPU) that work together to achieve the result, coordinated by the user instructions (program).

Debug is a program that runs on a machine with an MS-DOS operating system, or within an MS-DOS emulator such

as DOSBox. It allows you to interface intimately with your machine, inspecting its registers, memory, input/output,

and ALU, whilst providing or modifying the coordinating instructions.

1. Viewing and changing register values directly

r Show the x86 chip registers and the values they are holding (e.g. AX=0000).

An 8086 machine (emulated by DOSBox) has 4 general purpose registers (AX, BX, CX, DX), 2 stack registers (SP, BP), 2

index registers (SI, DI), 4 segment registers (DS, ES, SS, CS), 1 instruction pointer (IP), and a flags register holding 16

flags of which 8 are visible to the user.

Each digit in debug is a hexadecimal number, i.e. has value from 0 to F (15), represented in binary by 4-bits (nybble)

with 2^4 = 16 values (0 to F). Register AX (=0000) is 16-bits so can hold 4x 4-bit hex digits, or 2x 8-bit bytes, a high

and a low byte. The 8086 has an 8-bit (byte-wide) data bus even though it has a 16-bit instruction set (confirm). The

high and low bytes can be accessed independently (AH, AL).

rax Show and set the value for register AX to 0x0A01

Observe this is done.

2. Incrementing the register value by specifying then tracing through code

Let’s add 1 to AX. To do this we will need to give the chip an instruction. We’ll use the INC command to increment

the register.

a100 Start assembling user provided instructions beginning from memory location 100 (segment, offset?)

inc al increment the low byte of AX

u100 102 disassemble (view) memory from location 100 to 102

r show the registers and the next instruction (at rip) that will be executed if you trace through one

step.

t trace one step (execute next instruction)

Hands-on Introduction to Computers & Programming – using DEBUG and the 8086 Microprocessor July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Notice AX is now holding 0x0A02, and the instruction pointer has advanced one byte to 0x0102. The inc command

has worked.

3. Assembling an infinite looping counter program

a100

add al,1

jmp 0100

u100 102

r

Observe that the jmp command (goto) sets the instruction pointer back to 0100.

Each time through the loop raises AX by another 1.

4. Entering a program in machine language

e100

Type in the following machine code (in hex). You can see this by looking at a small COM program in a hex editor

(JujuEdit, or Notepad++ in Hex mode).

Hands-on Introduction to Computers & Programming – using DEBUG and the 8086 Microprocessor July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

The correction with (BC 4C CD 21) MOV AH, 4C; INT 21; provides the correct program terminating instruction

sequence for an EXE, replacing (CD 20) INT 20 which was valid when DEBUG was able to run in early days but is not

any longer.

Press space to move to the next byte. Press Enter to complete entry.

Unassemble it to see the instructions and find out what this progam does:

Now you see the reason for the repetitive entries – there is a lot of repetition in this code: 2 of every 3 lines is

repeated.

mov DL, 0x48 (all numbers in debug are shown in hex)

mov AH, 0x02

int 21

Exercise: Can we do this more efficiently?

Yes. Loop through a string displaying characters. This would be size efficient code but not speed efficient as the

number of instructions executed remains the same. We can also call a string printing function in BIOS, which pushes

the efficiency to the BIOS implementation.

5. Saving and Loading Files

Hands-on Introduction to Computers & Programming – using DEBUG and the 8086 Microprocessor July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Before we go further, we should save what we’ve done, in case something goes wrong and we have to retype the

entries…

Saving a file

nfilename.com

rbx make sure the bx register is 0

0

rcx set the cx register with the **HEX** number hh of bytes the program takes (e.g. 74d for Hello.com = 4Ah)

(You can use the calculator to figure out hex numbers for decimal ones)

hh

w writes the program to a command file

Loading a file

nfilename.com

l

Success is silent, i.e. there is no prompt that the file is loaded.

You can see the program by pressing u (which lists from 0100 in memory).

6. Tracing and Running through a file

What does this code do?

Tracing instruction at a time.

Tracing (t) steps through a program 1 instruction at a time. Notice that the IP register (instruction pointer) advances

to the next instruction. If a JMP is processed, then IP moves to the indicated instruction. If an INT (interrupt) is

processed, IP moves to the interrupt service routine (ISR) which is in a different part of memory. If you keep tracing,

you will in a few instructions be returned back to your code through IRET xx (interrupt return).

Note – commands like putting characters to the screen happen within the interrupt, so you see them in debug just

before the IRET instruction. (To get debug to step over code would be very handy; it would show the result of the

interrupt code, which in this case is to print a character to the console.)

Hands-on Introduction to Computers & Programming – using DEBUG and the 8086 Microprocessor July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Notice the e after the third –t from the top? That’s the 2nd character output from Hello World!

Tracing several steps at a time.

tN traces N instructions at a time, showing the register bank after each instruction.

In the above code, as example, t6 will process one character at a time in the above program, 2 assembly instructions,

3 interrupt instructions, 1 IRET instruction.

Note that the u (unassembled) command, shows the next 16 commands from the current instruction pointer.

You can change what instruction will be run next by setting the instruction pointer yourself (a manual jump) using rip

and then HHH for the memory location.

Exercise: How efficient/expensive is this program? How to compare to the use of BIOS string print function.

Running the program to a breakpoint

gHHH runs the program to the HHH address in memory (line number, memory location)

Running the program

g runs the program until termination (mov ah 4C; int 21)

Hands-on Introduction to Computers & Programming – using DEBUG and the 8086 Microprocessor July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Further Reading & Next Steps

Debug is useful. There are many things that it can do. Follow the references below to learn more.

A more powerful debug program is sst.

To assemble EXE programs directly from assembler, use NASM

Forth is an excellent low level programming language that allows seamless embedding of assembly. F-PC runs within

DOSBox and allows exploring x86 assembly language fully from within the Forth programming environment.

Application areas are: 1) microcontroller and embedded systems programming, 2) low level graphics programming

(fast graphics), 3) higher level C language programming, and 4) scientific/numerical programming (simulation, fast

processing, etc.)

[1] Robert Lafore, 1991, Assembly Language Primer for the IBM PC and XT, The Waite Group, 512pps.

https://www.amazon.co.uk/Assembly-Language-Primer-Plume-computer/dp/0452257115

[2] MS-Debug Command Description, Daniel B. Sedory

https://thestarman.pcministry.com/asm/debug/debug2.htm

[2] Starman’s Guide to Debug, 2004-2017, Daniel B. Sedory

http://www.starman.vertcomp.com/asm/debug/debug.htm

[3] Debug (command)

https://en.wikipedia.org/wiki/Debug_(command)

[4] MS-Debug History (1981-2009)

http://www.kerrywong.com/2009/05/08/ms-debug-1981-2009/

[5] Debug Tutorial

https://jakash3.wordpress.com/2010/02/08/debug-exe-tutorial/

[6] Debug Tutorial - Detailed

http://www.armory.com/~rstevew/Public/Tutor/Debug/debug-manual.html

[7] Tutorial with graphics mode

http://www.davidwills.us/cmis310/8086/debug.html

[8] Assembly language tutorial x86 in AT&T syntax

http://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html

[9] Starman’s Realm

http://www.starman.vertcomp.com/

[10] Starman’s Assembly 101

http://www.starman.vertcomp.com/asm/index.html

[11] Starman’s Comprehensive References page

http://www.starman.vertcomp.com/asm/index.html#REF

http://flint.cs.yale.edu/cs421/papers/x86-asm/asm.html
http://www.starman.vertcomp.com/
http://www.starman.vertcomp.com/asm/index.html
http://www.starman.vertcomp.com/asm/index.html#REF

Hands-on Introduction to Computers & Programming – using DEBUG and the 8086 Microprocessor July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

FREQUENTLY ASKED QUESTIONS

FAQ1: Why does INT 20 not work in DOSBox as program termination, but it used to work in Windows in WinXP or

earlier?

Note: Using INT 20 as program termination within DOSBox will cause debug to crash. Fix this by changing the exit

code to MOV AL, 4C; INT 21. You can load the program in DOSBox, use the a command to assemble at the INT 20

memory location and overwrite it with the correct exit code. Then use the w command to save the modified

program.

Here’s the explanation: https://stackoverflow.com/questions/12591673/whats-the-difference-between-using-int-

0x20-and-int-0x21-ah-0x4c-to-exit-a-16

FAQ2: What assembly languages does debug understand?

As a Microsoft product, debug uses Intel syntax not the UNIX/Linux convention of AT&T / Motorola syntax.

Examples of both:

Intel:

MOV AH, 4; load literal value 4 in low byte of AX register

MOV AX, BX; copy 2 bytes to AX from register BX

AT&T equivalent:

mov 4, ah; load literal value 4 to register AH.

mov bx, ax; copy 2 bytes in BX to register AX.

FAQ3. What is the register set in 8086 and what do they do?

AX, BX, CX, DX are the standard registers.

BP/SP are pointers to the base and top of stack respectively (see Part Two for understanding the stackframe, stack

pointers, and stack instructions (PUSH/POP).

SI/DI are index pointers.

DS/ES/SS/CS are segment pointers (see Part Three for understanding these).

IP is instruction pointer --- we have covered that in this paper.

The rest (NV, UP, EI, PL, NZ, NA, PO, NC) are flags. (see Part Four for understanding these).

FAQ4. What happens when a file greater than 65,536 bytes (=2^16) is loaded into debug (e.g. edit.com = 69,886

bytes)?

FAQ5. What is the bloat factor in file sizes when going from 8088 (8-bit word), 8086 (16-bit word) or 80686 (32-bit

word) to 64-bit machine? X6, X4, or X2 because every e.g. 8-bit word for an 8088 processor now occupies 64-bits on

disk.

https://stackoverflow.com/questions/12591673/whats-the-difference-between-using-int-0x20-and-int-0x21-ah-0x4c-to-exit-a-16
https://stackoverflow.com/questions/12591673/whats-the-difference-between-using-int-0x20-and-int-0x21-ah-0x4c-to-exit-a-16

Hands-on Introduction to Computers & Programming – using DEBUG and the 8086 Microprocessor July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

APPENDICES

Appendix 1. Running MS-DEBUG in a modern Windows machine within DOSBox a DOS Emulator.

Windows removed support for 16-bit DOS and all 16-bit applications when it moved to 64-bits (Win7 onward), so to

run such programs now you will need a DOS Emulator. The two leading DOS emulators for Windows are DOSBox

(specialized for Gaming and other graphics, sound card emulation) and vDOS/vDOSPlus (specialized for business

software performance, integration with Windows, printing, zoom in/out resizing of fonts, etc.) [1,2,3]. DOSBox has

been stable at version 0.74 since 2013 and emulates 80286/80386 and its peripherals. [1] vDOSPlus has a Portable

version from Nov 2015, comes with DosZip Commander v2.55 (Hjort Nidudsson), and 4DOS command prompt.

(vDOS continues to be worked on with full source code through 2017, and updates through 2018.)

Note: DOSBox requires debugNT.exe. vDOSplus requires debug98.exe

Download DOSBox DOS emulator from the DOSBox project page: http://www.dosbox.com/download.php?main=1

or directly from SourceForge: https://sourceforge.net/projects/dosbox/files/dosbox/0.74/DOSBox0.74-win32-

installer.exe/download

Install to the c:\ drive instead of to the default Program Files location, e.g. to c:\totalcmd\dosbox\

Use the -noconsole switch to start DOSbox cleanly (suppresses a dummy console window that does nothing)

Set a virtual drive to the path where you have your dos files, e.g.:

 mount c c:/totalcmd/dosprogs

If you want DOSBox to point to this path when it launches, you can set the mount drive instruction to run

automatically at startup by copying it to the DOSBox configuration file:

 run Doskey Options.bat

 it will write the config file to

 "c:\Documents and Settings\ebraha01\Local Settings\Application Data\DOSBox\dosbox-0.74.conf"

 modify it there, save (no .txt extension!)

To AUTO-MOUNT:

 add the mount instructions to [autoexec] command in configuration file:

 http://ipggi.wordpress.com/2008/02/17/dosbox-beginners-newbie-and-first-timers-guide/

To relocate the config file to the dos box folder:

 start dos box with the switch

 -conf c:\totalcmd\dosBox-0.74\dosbox-0.74.conf

Debug can be downloaded from the MathSciTech downloads page:

http://www.mathscitech.org/downloads/debug.exe

References:

[1] What DOSBox emulates. https://www.dosbox.com/status.php?show_status=1

[2] vDOS. http://www.vdos.info/

[3] vDOSplus http://vdosplus.org/

Appendix 2. Debug commands

DEBUG COMMANDS

==============

http://www.dosbox.com/download.php?main=1
https://sourceforge.net/projects/dosbox/files/dosbox/0.74/DOSBox0.74-win32-installer.exe/download
https://sourceforge.net/projects/dosbox/files/dosbox/0.74/DOSBox0.74-win32-installer.exe/download
https://www.dosbox.com/status.php?show_status=1
http://www.vdos.info/
http://vdosplus.org/

Hands-on Introduction to Computers & Programming – using DEBUG and the 8086 Microprocessor July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

? displays debug help menu

command list for debug: https://thestarman.pcministry.com/asm/debug/debug2.htm

cmd (brings up a command window, DOS box, console window)

On machines newer than WinXP, you need to use DOSbox (DOS emulator) and run debug.exe from WinNT.

debug (puts the console into debug mode

- the prompt

q ; quit

a100 ; input assembly commands starting at 0x0d22:0100, [return] to end input mode

u100 ; disassemble commands starting at 0x0100

d100 ; dump (show) bytes beginning at 0x0100

e100 ; replace ONE byte at the specified address

r ; show registers

t ; trace (execute) one statement

t=addr n ; trace n instructions beginning at addr

[not true] 24 ; this is the opcode for terminating the program, so that you don't go "forever"

WORKING WITH MEMORY

r show all registers

 notice that debug is for the 16-bit 8086 chip.

 notice code, data, extra, and stack segments come up: 073F.

 notice instruction pointer starts at: 0100.

 notice base pointer, source and destination index pointers are null: 0000.

 notice stack pointer starts at: 00FD, 3 bytes below 0100.

 remember: the stack extends DOWNWARD in memory as you push

stuff on it...

 the stack is 16-bits (2 bytes), so each push subtracts 2 bytes, and

each pop addes 2 bytes

r<reg> show register reg, with a chance to set its value (can only show/modify 16-bit registers) e.g. rax rbx, etc.

rip set instruction pointer register

rf show all flag registers. You can then type in the two digit code to set the corresponding flag.

CONVENTIONS

80x86/8088 are "little-endian" as follows:

 0x1234 is stored as 34 12 in debug, i.e. the LSB is in the LEFT memory locations, and the MSB is in the RIGHT

memory locations, which provides a nice pnemonic.

The Intel processor is LITTLE-ENDIAN, i.e. the little end of the number goes into the pipe first, so that LSB is on the

left with MSB on the right... not quite what we do when we read... and you see that in the BX+9A00, the 9A is the

MSB, 00 is the LSB

WORKING WITH INSTRUCTIONS

d100 dumps from 100h IN THE DATA SEGMENT --- this is typically the same as the code segment for COM

files, but will typically be different for OMF EXEs.

d100 200 dumps from 100h to 200h

d100 should see B0 01 (machine code)

dHHHH:hhhh dumps from segment HHHH offset hhhh

https://thestarman.pcministry.com/asm/debug/debug2.htm

Hands-on Introduction to Computers & Programming – using DEBUG and the 8086 Microprocessor July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

u100 unassemble (disassemble) from 100h

u100 200 unassemble (disassemble) from 100h to 200h

f100 200 ff fills from 100h to 200h with ff

e100 allows editing memory at 100h, 1 byte at a time. Press space to move on to next byte. Format is

curval.newval Useful if you want to enter a machine language code in machine language, instead of assembling it.

You are entering machine language op-codes and arguments, i.e. you are coding directly in the machine language.

a100 allows assembling program from line 100h. Press enter to return to the command prompt. You are

entering assembly code mnemonics and debug is assembling them into the corresponding machine language.

Example: type mov al,01 (intel x86 8-bit assembly language)

RUNNING PROGRAMS IN MEMORY

HEX convention - all numbers are hex

r show registers. at the bottom of the printout is the command that the IP now points to...

t trace (one command at a time). Completing a trace shows the registers (r) and the next command, both

dumped and disassembled --

 -- NOTE: DON'T trace an interrupt! Either skip over it, or NOP it out using azzz nop

or ezzz 90 (90 is the opcode for nop)

g go : runs the program from memory, until...?

ghh run till arrive at the line hh, i.e. hh becomes a breakpoint

LOADING A COMMAND FILE (.com) INTO MEMORY

nfilename.com sets name variable to the given file (has to be .com?)

l loads the program into memory (beginning at 0100h)

Note: rcx will hold the number (in hex) of bytes read in from the file. Useful if you want to save it with another

name.

SAVING A COMMAND FILE

nfilename.com

rbx make sure the bx register is 0

0

rcx set the cx register with the **HEX** number hh of bytes the program takes (e.g. 74d for Hello.com = 4Ah)

(You can use the calculator to figure out hex numbers for decimal ones)

hh

w writes the program to a command file

===CHECK===

nfilename.com sets name variable to the given command program (has to be com)

l loads the command program

LOADING EXECUTABLE FILE (.exe) INTO MEMORY

Run debug hello.exe, where hello.exe is a simple compiled Hello World! program. Debug will load you up where the

program is about to start... but there seems to be a limit to how large a program debug can handle...

Hands-on Introduction to Computers & Programming – using DEBUG and the 8086 Microprocessor July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

You can do the same with sst: sst hello.exe But it appears that SST has a different length window. More is cut off!

Another way to disassembler a .exe is to NASM's ndisasm.exe

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Objective. This worksheet continues the learning journey in Computer Architecture and Programming. DEBUG is

used to discover key points through guided exploration and deep dives into illustrative examples. In this section, we

explore (A) memory and pointers, and (B) the stackframe, stack pointers SP/BP, and stack instructions: PUSH, POP,

and (C) memory segments.

Computer Memory and the von Neumann Architecture

The revolutionary aspect of modern computer design is that memory is the same whether storing instructions or

data.

Debug and Memory

Debug starts up in the tiny memory model (see FAQ1 for description of 8086 memory models), in which CS=SS=DS,

i.e. code, stack, and data all share the same 64k byte segment. All general purpose, stack, and index registers are 0,

and the program enters the Tiny Memory Model (DS=ES=SS=CS). IP points to 0100h (which could contain any

random data) interpreted as a command. The flags are set to defaults (No Overflow, Up Direction, Enable Interrupts,

Plus, Nonzero, No auxiliary (nibble) carry, Parity Odd, No Carrry). See FAQ2 for Debug state after loading a file.

debug in clean state at startup --- use command r to see the register bank and next instruction.

The Registers (AX, BX, CX, DX)

AX, BX, CX, DX are the standard 16-bit registers on an 8086. Each has a high and low byte which can be accessed

independently (e.g. AH, AL).

In code, register contents are changed using MOV (move, copy, load, or store, depending on context), and

mathematical or logical operators INC (increment), DEC (decrement), AND, OR, NOT, ADD, SUB, MUL, DIV, etc.

The registers each have their own superpowers – capabilities which are optimized in hardware for them, and which

result in smaller code or faster execution.

AX is optimized as an accumulator for arithmetic and logical operations. So adding an immediate to AX or AL is a

smaller instruction than to any other register because AX/AL have short code for this: 0x04hh (add al, hh) and

0x05hhhh (add ax,hhhh), 2 bytes vs. 3 bytes, or 3 bytes vs. 4 bytes.

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

BX is optimized as a memory pointer for memory access instructions such as MOV, ADD, SUB, in memory mode.

CX is optimized as a counter for use with iteration instructions as LOOP, REPZ, etc.

The Flags (of=NV,OV, df=UP,DN, if=DI,EI, sf=PL,NG, zf =NZ,ZR, af=NA,AC, pf=PO,PE, cf=NC,CY) – more details in Part

4.

The eight 8086 flags are bits that provide signals for decisions to be taken as a result of processing (e.g. overflow,

sign, parity, zero outcome, or carry) or are control bits (e.g. set memory direction, enable interrupt).

The Stackframe, Stack Segment and Stack Pointers (SS, BP, SP) – we cover this in Part 2

The stackframe sits in the stack segment (SS). The memory available within the stack (in bytes) at any point is what

sits between the base pointer (BP) which points to the bottom of the stack (SS:BP), and the stack pointer (SP), which

points to the top of stack (SS:SP). All PUSH and POP instructions operate on the top of stack. The convention in the

8086 is that the stack grows DOWNWARD (i.e. to smaller memory addresses). Note that SP points to the LAST item

that is on the stack, so a PUSH must first advance (go down) by W bytes (W being the size of the data word being

pushed), and then store to the stack, and POP needs only go up by W bytes to point to the 2nd last item. It is not

possible to tell how many items are on the stack, just how much space is available to use. In Figure 1, BP=0000 and

SP=00FD so there are 0XFD (251d) bytes available on the stack frame.

Stack segment can be changed in code by pushing an address onto the stack and POP SS.

Base and stack pointers are registers and can be used as desired using MOV and other register operations (ADD, OR,

etc.)

Code Segment and Instruction Pointer (CS, IP)

The code segment (CS) is where operating memory is stored. In the tiny memory model, the SS=CS and consists of

the first 0x100 bytes of memory (0000 to 00FF). Coded instructions begin at 0x100, and this is where the instruction

pointer (IP) begins. From 0x0000 to 0x0100 lives the stack frame.

Within Debug, CS and IP can be changed (rds and rip commands).

In code, IP is changed by JMP, and undocumented pop cs instruction (0F).

Data and Extra Segments (DS, ES)

Data Segment (DS) for all references to data, Extended Segment (ES) for string operations.

Index Pointers (SI, DI)

These registers are source/destination indices used as offsets into data/extra segments for mass movement of data

(repz, stosw, movsw, etc) or by convention in manual movements of data chunks.

Segmented Memory Model – we cover this in more detail in Part 3

The 8086 has a 20-bit memory bus able to physically (linearly) address 2^20 = 100,000h bytes (1MB). But the 8086

has a 16-bit word length, so can only address 2^16 = 10,000h bytes (64KB). Each 64KB chunk is called a segment.

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Exercise: How many distinct segments are there in a natural partition of physical memory? 16.

The key point is that the natural syntax of the 8086 works within a memory segment.

The particular segment being referred to is based on a referencing convention for each memory operation.

Data operations (MOV, etc.) refer to DS. Stack operations (PUSH, POP, etc.) refer to SS. String operations (REPZ,

etc.) refer to ES.

The tiny memory model is simple: DS=ES=SS=CS --- the entire program with all its memory lives within 64KB.

Given Chuck Moore’s claim that a Forth program should be no more than 1000 instructions long, this would be a 4KB

program (assuming 4 bytes per instruction). If the quote was for 1000 lines long then assuming 5 Forth instructions

per line, equivalent 4 bytes per instruction, this is 20KB program. Debug itself is a 20k program.

Numbers and Literals – more detail in Part X.

Literals are specific values, called immediates (abbreviated IMM). All numbers are assumed to be in HEX, but the

interpretation of whether it is a signed or unsigned integer, or fixed point or floating point number depends on the

interpretation context. So 0xFFFE is -2 if signed integer or 65,534d if unsigned.

Numbers > 255 (one byte) are little endian, i.e. going from left to right we have the least significant byte (LSB) first.

So 0xFFFE (-1) is stored as FE FF in memory (with FE in the first or lower numbered memory).

Translation from Hex to Decimal

Decimal, Binary, Hex, and Octal are just numbers with different bases (10, 16, 2, and 8). The meaning of numbers as

a sequence of digits remains the same in all bases: numbers are power series with the given base. Examples:

140d = 1*10^2 + 4^10*1 + 0 = 100 + 40 + 0 (common in standard arithmetic)

140h = 1*16^2 + 4^16*1 + 0 = 256 + 64 + 0 = 320d (common with 16-bit computers)

140h in binary = 0001 0100 0000 (translate each of the hex digits directly into binary and concatenate)

o140 in octal (common with 8-bit computers) = 1*8^2+4*8^1+0 = 64 + 32 = 96

Exercise: 140h in octal? 600

Memory, Addresses, and Pointers – we cover this in more detail in Part 4

We have seen that a computer consists of a sequence of memory cells (latches) that can hold values based on our

interpretation of consecutive bits as numbers base 2.

So we need to distinguish between literal/immediate values such as 0xFFFE and memory address [0xFFFE]. Memory

addresses are always specified in [square brackets]. This address label is called a pointer (or indirect reference).

Exercise 1: Let’s look at an example:

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

We’ll initialize all the registers: BX=1000; BP=1200; SI=500; DI=600; AX=00FD;

Stepping through the code 8 times (command t for trace), will put FD at the respective memory slots, which we can

see by dumping the relevant memory:

TIP: it is useful to be able to use DEBUG as a calculator in order to stay within it. Press ? for help.

H 1 1 (adds and subtracts)

Now it is straightforward to specify the two rows of memory to be dumped, 0xF before and 0xF after.

Sure enough, the bytes are stored there.

Exercise 2: Taking advantage of DEBUG’s memory view

First paragraph. Notice the SS:1700=FF at the right? This is providing the physical address of the pointer [BP+SI] and

showing what is in it before the AND instruction executes. Brilliant and very handy.

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Notice that the default interpretation is this is a NEAR pointer into SS. Why? Because BP has been used. If BX had

been used, it would have been DS. If

Second paragraph. Notice how the baseline segment reference (CS) is explicitly stated in code?

Third paragraph. Observe the SS:1700 location

Exercise 3. Verifying the baseline segments for each of the memory modes

 [BX+hh] as a NEAR pointer is relative to DS regardless of hh. Before the instruction executes, it holds 4C.

After executing the statement, the location holds 4B. Why? The low byte of 4C+FF=014B is 4B.

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Next. [BP+hh] as a NEAR pointer is relative to SS regardless of hh.

Next. [SI], [DI], and [hh] as NEAR pointers are also all relative to DS.

Exercise 4: Reverse Engineering the Opcodes

ONE instruction (0x00HH) add mem/reg8**, reg8*

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

The rest of the pattern:

Other memory/register instructions look a lot like this:

Exercise 3. Test the overriding of default stack

Using CS: and ES: overrides.

Exercise 2. Discovering the Stack (PUSH, POP)

Only registers and memory can be pushed, not literals.

Valid: push ax; push [bx]; Invalid: push 0xff (Try it, i.e. try to assemble push ax and push ah or push al.)

Let’s reverse engineer how the 8086 stack works by experimenting with push and pop.

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Assemble the following instructions into memory location 0x0100 (a100 command)

mov ax, 0xFE; store 0xFE into register AX

push ax; AX value to stack

dec ax; decrement AX

push ax; AX value to stack.

Let’s trace this.

Observe: at clean startup, SP points to 0xFD. And SS=CS, i.e. the code and stack segments are the same (see FAQ2

for when they divege,

After first push, SP goes to 0xFB. Pushing a 16-bit (2 byte) value from AX onto the stack advanced the stack pointer

by 2 bytes – makes sense.

After second push, SP goes to 0xF9.

Let’s inspect the stack in debug to see the values we have pushed.

uf8 u105

Notice: 0x00FD (second value

pushed) is stored in cells

0xF9 and 0xFA in little endian

order, i.e. FD 00 (going from

low to high).

0x00FE (first value pushed) is

stored in cells 0xFB and 0xFC.

The stack pointer SP=0xF9

points to the last valid entry

on the stack.

Outside the tiny memory model, i.e. when the stack segment SS is different from the code segment CS, use the

extended notation SS:xxxx to see the stackframe. This works with both u and d commands.

Example: u0800:0070 0080 / ues:0070 0080 or d0800:0070 / des:0070

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

A few take-aways:

1) In the tiny memory model, stack memory and instruction memory are contiguous – instructions start at

0x0100. The stack grows downward from 0xFD (which was holding 0x0000).

2) A push operation will first decrement SP by 2 bytes and then write the value to the pointer.

3) A pop operation will first read from SP and then increment SP by 2 bytes so that it points to the next valid

entry in the stack.

4) The endian-ness of x86 makes sense when observing that the stack grows downwards, i.e. the low byte

appears in lower memory (i.e. first when reading from low to high).

Key concept: the stack in x86 grows downward into memory toward the base pointer.

Stack errors:

Overflow is where SP goes past the BP. Underflow is where it moves below where it was supposed to. In the below

example, the last pop instruction underflows the stack, i.e. removes a value we did not put on. This an important

point. Assembly language coding requires you to know what you are doing. There are no safeties. Nothing prevents

you from corrupting the stack with underflow errors, for example.

Exercise: Setting IP in code.

Push an address onto the stack.

Issue instruction RET (0xC3). This pops the value on the stack into IP.

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Debug seems to skip over C1 and the next word (i.e. 3 bytes).

But RET (C3) works as expected.

Exercise 3: Let’s deliberately create an underflow.

Exercise 4: Create an overflow.

Exercise 5: single byte push/pops?

Not possible. Why? Because the 8086 has a 16-bit (2 byte) word, so the cells in the stack frame are 2 bytes wide.

(Try it: push ax; push al; push ah;)

Exercise 6: How far down does the stack frame go?

To the BP=0x0000 upon startup there were FD (=253d) cells available.

Segmented Memory – we cover this in Part 3

How do we view data in a particular segment? We specify in S:O format, where S=seg register and O=offset register.

u1000:0000 shows segment 0x1000 from offset 0x0000.

u1000 shows offset 0x1000 from whichever segment was last specified.

Exercise: What happens during an overlow?

In debug, u passes through a segment and then wraps around the beginning. Check: u0000 then uff00 and run

forward with u u u. Observe that this wraps back to u0000.

Exercise: How do the segments overlap? Observe 1695:0020 = 1696:0010, and the two windows are identical

except offset by 0x10 in offset space.

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

We conclude:

1695:0010 = 1696:0000

1695:0020 = 1696:0010

1695:0100 = 1696:00F0

1695:1000 = 1696:FFF0

Then

1695:0020 = 1696:0010 = 1697:0000

1694:0030 = 1695:0020 = … = 1697:0000

1690:0010 = 1691:0000

1690:0100 = 16A0:0000

1600:0100 = 1610:0000

1600:1000 = 1700:0000

1000:1000 = 1100:0000

1000:FFF0 = 1FFF:0000

1000:FFFF = 1FFF:000F

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Conclusion: Segmented Memory Model is based on 0xFFFF (16-bit) addressing of a 20-bit address space (0x10000).

It works by taking two 16-bit addresses and overlapping them: the last 3 hex digits of the high address are equivalent

to the first 3 hex digits of the low address.

1xxx:xxx0

We are correct:

https://en.wikipedia.org/wiki/X86_memory_segmentation#Real_mode

Exercise: Can DEBUG handle a huge memory model?

So – let’s find the start of the edit.com file that we loaded into memory.

Debug edit.com

What are the return values in the registers?

The size of the file read is AX+CX, i.e. FFFF+10FE = 65,536+4350 = 69,886 which is exactly the size of edit.com

10F60 lines of code where debug starts

Debug 1696:0000 starts at line 0x10F4F (10F4:000F = 1000:0F4F)

So 0696:0000 should see somewhere around line 0F4F

Experiment: used a Hex Editor to chop down edit.com to FF00 lines (to fill one segment).

Let’s see if then debug loads the program correctly. It doesn’t, but that is because it is an EXE (see above).

How do we get memory allocated for a use outside the tiny memory model, e.g. a separate DS or ES segment?

(See Moore’s comments about 1000 lines of code… - and he meant in decimal) Already, this is 16x as big…)

[6] 1x Code: Thoughts on Forth (1999)

http://www.ultratechnology.com/1xforth.htm

That didn’t work.

Let’s try just F000 lines of code.

What about loading any file? Hello1.com is 88 bytes.

https://en.wikipedia.org/wiki/X86_memory_segmentation#Real_mode
http://www.ultratechnology.com/1xforth.htm

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Note: CS = SS and SP is given 65k bytes of space. So the code grows up and the stack grows down.

https://en.wikipedia.org/wiki/Memory_segmentation

https://en.wikipedia.org/wiki/X86_memory_segmentation

FREQUENTLY ASKED QUESTIONS

FAQ1. What are the memory models of the 8086?

Memory Models

8086 has 6 memory models.

Tiny memory model has everything in one 64k segment, i.e. CS=SS=DS=ES. Note this only works in MS-DOS.

Small memory model has one code segment and one data segment, but they could be different from each other.

The key is that all pointers are NEAR pointers by default, i.e. offsets are baselined by convention. Typically SS=CS.

Typically ES=DS.

Then we have two intermediate models: multiple data segments (DS and ES) but one code segment (compact

model), or multiple code segments and one data segment (medium model).

Finally we have multiple code and data segments (large model).

And then the huge model is where code or data does not fit and extends across multiple segments.

Pointers within a segment are NEAR pointers (16-bits). Pointers beyond a segment can be NEAR if they are offset

pointers with an implicit segment baseline, otherwise they must be FAR pointers (32-bits).

References:

[1] http://www.c-jump.com/CIS77/ASM/Directives/D77_0030_models.htm

[2] http://www.scit.wlv.ac.uk/~in8297/CP4044/cbook/chap6/chap6.msdos.memory.html

FAQ2. What happens to the memory state when Debug loads a file?

Loading hello1.com (88 bytes) keeps debug in the tiny memory model.

Loading up tasm.com (59,016 bytes, 0xE688 bytes) still keeps debug in tiny memory model.

https://en.wikipedia.org/wiki/Memory_segmentation
https://en.wikipedia.org/wiki/X86_memory_segmentation
http://www.c-jump.com/CIS77/ASM/Directives/D77_0030_models.htm
http://www.scit.wlv.ac.uk/~in8297/CP4044/cbook/chap6/chap6.msdos.memory.html

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

Loading up an EXE such as edit.com (only way to tell its an EXE is to look at first few lines with a text editor – it has

the MZ magic numbers at the start). Because it’s an EXE it will adjust the segments etc. as EXEs don’t run in tiny

memory model. edit.com also is >64k bytes. (X bytes).

The system switches out of tiny model – all segment registers are given new memory to point to, CS=SS is retained,

i.e. code and stack segments continue to be together, and data / extra segments are moved elsewhere to make

room.

FAQ3. What happens when a file greater than 65,536 bytes (=2^16) is loaded into debug (e.g. edit.com = 69,886

bytes)?

First, be careful. Existing files, even though stated as .com, may not be. Inspect them with a text editor. If they are

EXE files they will start with MZ. Debug will try to load them using the EXE information in their header that sets

segments, etc. Edit.com is an EXE so will not load as you expect (see Appendix 1 for details on the EXE header).

References:

Raymond Chen

https://blogs.msdn.microsoft.com/oldnewthing/20110314-00/?p=11233

https://blogs.msdn.microsoft.com/oldnewthing/20080324-00/?p=23033/

FAQ4. What makes an EXE file executable? Vs. a COM file?

FAQ5. Does every DOS program get allocated 64KB memory space to operate in? How do programs request

more? Was MS-DOS every multi-tasking? Multi-application? What about when Windows started this?

FAQ5. What is the stack useful for?

The stack is an area of memory that is available for fast access – storing to and loading from.

It provides for convenient storage for intermediate data, since the number of registers are often restricted (e.g. 4

primary registers in 8086, AX to DX)

https://blogs.msdn.microsoft.com/oldnewthing/20110314-00/?p=11233
https://blogs.msdn.microsoft.com/oldnewthing/20080324-00/?p=23033/

Computer Architecture & Programming – Using Debug – Part One July 2018
 Authors: Assad Ebrahim (assad.ebrahim@alum.swarthmore.edu)

1

The stack is used in subroutines to provide a clean memory without the function having to deal with the contents of

the calling routine. So the function implementation can store the register values upon being launched, and restore

them upon exit, thereby cleaning up after itself.

The LIFO design of a stack allows for nesting such operations, i.e. a sub-subroutine can store its calling context onto

the stack, use the stack itself, clean up its own usage, return and restore the calling context, which can continue, and

as long as it also cleans what it has added, then it can be sure that when it returns, the original context will be

restored intact.

This is a very powerful programming paradigm.

In another direction, stacks are in fact all that one needs --- one does not need memory registers at all.

Forth is a language designed by Chuck Moore (b1938) on this concept. It creates a machine abstraction in software

that has only a stack memory.

A Forth chip is a chip that implements this concept.

There are a few historical Forth chips that were used in the 1960s space exploration context and worked very well.

Currently, Forth chips are part of massively parallel, low power, inexpensive array processing (see GreenArrays, 144-

core asynchronous chip, consuming 100nW when idle).

Computer Architecture & Programming – Using Debug – Part Two July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Objective. This worksheet uses DEBUG to explore, illustrate, discover key points about Computer Architecture and

Programming. This continues from Part Two which explores the x86 stack, stack pointers (SP/BP), and stack

instructions (PUSH/POP). This worksheet explores the memory segments.

Examining a real Machine Language program (deliverable: present it as a structured assembly language program,

with comments)

Type the following 8086 machine code into debug using the e100 instruction…
B0 13 CD 10 33 C0 BF B0 01 B9 00 7D F3 AB BA C8

03 EE 42 FE C9 80 FB 3C 73 05 80 C3 04 EB 08 80

FF 3C 73 03 80 C7 04 8A C3 EE 8A C7 EE 32 C0 EE

E2 E3 B1 C8 81 06 AC 01 E9 62 80 06 AC 01 62 81

16 AE 01 19 36 A1 AE 01 33 D2 BB 40 01 F7 F3 8B

F2 FE 8C 70 7D E2 DD BE F1 02 BF B1 7E B1 62 BA

3E 01 8A 9C C0 FE 8A 44 FF 03 D8 8A 44 01 03 D8

8A 84 40 01 03 D8 C1 EB 02 88 1D 46 47 4A 75 E2

46 46 47 47 E2 D9 BE B2 7E BF B2 01 B9 7E 3E 51

57 F3 A5 5E 68 00 A0 07 BF 02 7D 59 F3 A5 1E 07

B4 01 CD 16 74 8C B8 03 00 CD 10 C3

Source: http://www.starman.vertcomp.com/asm/fire/Fire.html

e100

Dump the code memory (command d)

mailto:assad.ebrahim@alum.swarthmore.edu
http://www.starman.vertcomp.com/asm/fire/Fire.html

Computer Architecture & Programming – Using Debug – Part Two July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Run it (g command).

Exercise: can use u command to unassemble the code

B0 13 = mov al, 13h
CD 10 = call interrupt 10h
33 = xor?

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Two July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Note, line 0x194 – this is where DEBUG unassembler doesn’t get this write, but stepping through the program does.

68 00 A0 pushes 0xA000 onto stack

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Two July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

07 pop es

BF 027D mov di, 0x7d02

59 pop cx

AC bytes (0x100 to 0x1ab)

Advanced Tracing

Some tracing skills will be valuable

T steps once

TN steps N steps forward, showing each one e.g. T10

Gxxxx run to breakpoint

Write to file.

nFIRE.COM

rbx

0

rcx

AC

W

Exercise: How to get this to load from a file?
When loading this from file --- it doesn’t work…

What’s the bug? It is this: the registers are not cleared by the program. So in Debug after loading the file, AX and CX

are messy. Setting in DEBUG AX=0000 gets it running but with a monochrome yellow palette.

What’s the long-term fix?

If instead we replace MOV AL,13 with MOV AX,13 that should work, right? Wrong. MOV AX,13 is 3 byte command

(B8 13 00) because the parameter is 0x0013. Whereas MOV AL,13 is a 2 byte command B0 13.

Ok, what about using a Hex editor insert an extra byte after the 2nd byte?

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Two July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

That works --- to a point. The rest of the program is shifted down by a byte, so any JMP or data references will be

off! This illustrates another issue with machine language. It is very difficult to maintain because everything is

hardcoded. (NOP instruction 90 doesn’t help here as it just adds extra padding – I don’t think word boundaries is the

problem.)

Exercise: Translate this to assembly language and compile as a flat file (use NASM) --- this preserves the size, but

presents it in a maintainable manner.

This is what assembly did for machine languages (1GL: https://en.wikipedia.org/wiki/First-

generation_programming_language) – made it human readable, editable, maintainable but still tied to a particular

CPU (processing unit) (2GL: https://www.techopedia.com/definition/24305/second-generation-programming-

language-2gl). This required additional tools to assemble (and possibly link) the code.

Exercise2: Translate this to Forth --- this now makes it portable, because Forth, like all early higher level languages

(FORTRAN, ALGOL, COBOL, BASIC, and C – these were the first 6/big6 3GLs - https://en.wikipedia.org/wiki/Third-

generation_programming_language)

https://en.wikipedia.org/wiki/Fourth-generation_programming_language

https://en.wikipedia.org/wiki/History_of_programming_languages

What do we learn from understanding the fire.com code?

Structured programming:

Use Labels instead of jump memory for relocatable code hooks instead of manually having to update all links and

jumps and relative references by hand.

Concept: asserts

Write the assertions into comments in code.

Simplification

Chuck Moore – factor. To do that you have to understand what is wanted to be done and then ask whether there is

a more optimal way

mailto:assad.ebrahim@alum.swarthmore.edu
https://en.wikipedia.org/wiki/First-generation_programming_language
https://en.wikipedia.org/wiki/First-generation_programming_language
https://www.techopedia.com/definition/24305/second-generation-programming-language-2gl
https://www.techopedia.com/definition/24305/second-generation-programming-language-2gl
https://en.wikipedia.org/wiki/Third-generation_programming_language
https://en.wikipedia.org/wiki/Third-generation_programming_language
https://en.wikipedia.org/wiki/Fourth-generation_programming_language
https://en.wikipedia.org/wiki/History_of_programming_languages

Computer Architecture & Programming – Using Debug – Part Two July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Simpler Code

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Two July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

END

Code segment (new) – 0x100 to 0x1A2 bytes, i.e. 0xA3 bytes (=163 bytes)

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Two July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Color Palette Generator

Exercise: Write a simulator in Forth

Generator.

Reconstructing the palette… bit.fs (scripts/binary)

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Two July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

?? How do you get this then?

There is no blue – confirmed.

But much of this is red/orange/yellow, which is red @ 3C and green varying from 0 to 3C

The Fire-Generator

Exercise: Write a simulator in Forth

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Two July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

First 10 residues are

Let’s fast forward to the end of the loop

Notice this matches the last numbers in our simulator:

Residue = 0x55

And 0x36 * 0x140 + 0x55 [ax x bx + dx] = 0x43D5

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Two July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

By the time we’re done with the loop, we have 152d (=98h) occurring 3 times… there’s the FD (from 00 to FF, FE, FD

is 3 steps…)

I think this is the bottom row of the VGA screen – 7D70, and all the residues will appear yellow (doesn’t matter how

many times they are hit, as the upper end of the palette is all yellow), and the ones NOT hit will be black, which will

be the flicker on the fire.

Let’s test by short-circuiting the code…

We will pop 0x1B2 onto SI and then start at IP=0x188.

Because it’s assembly code, we don’t have to worry about loops not completed etc.

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Two July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Diamond Filter

To step through the diamond filter run command td0 to go 10x through the loop (13d=0x0d instructions per loop)

in first pass through diamond filter, everything stays 0 until row 99 (N-1) when filter touches fire gen row, and

propagates fire upward by 1 row

each successive loop through diamond filter, propagates fire further upwards by 1 row, also merging flames with

neighbours flames, so more likely to be yellow

Exercise: Write a diamond-filter in Forth to simulate/visualize/verify what’s happening to generate the image.

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Two July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Notice the first row matches up with the table: 0, 1 no hits, 2,3,4 have 1 hit each, 5,6 no hits, 7 jas 1 hit.

But how do the rest of the fire rows get formed?

The next pass from top to bottom should encounter all zeroes until row N-2 (row 98)… but how to verify that in the

debugger? Two loops / inner and out. Would take too long to step through, even with two actions (gxxx and t5 to

get inside. There is another option. After checking

Write-up

Main outline (the * are the interesting bits)

 - switch screen driver to vga 18-bit color mode, 320x200 (=64k bytes). In hex $200x$140 (=$F0000 bytes)

 - clear (to 0s) memory buffer for vga data storage (will be two half screens, of $8000 = 32k bytes each, primary

screen, and transformation screen

 - ??? can this be optimized further??? because its a diamond filter moving downwards in memory, the raster

connection is tied only to two rows, so only need to save two rows, and then copy these back... (more complicated,

but would save space, and time)

 * select the vga color palette: 256 x 18-bit colors (6 bits each of R,G,B -- rshift each by 2 bits to see as 24-bit RGB)

 - ??? in what sequence are they loaded? sequence matters for the fire shading/gradient.

 * run fire animation in a loop, checking for a keypress, at which point stop

 - restore screen driver to text mode

Main outline in Forth, with * highlighting the key words

 : fire (--) switchto-graphics clear-mem-buf choose-fire-pallette*

 BEGIN

 make-fire* keypress?

 UNTIL

 switchto-text ;

 : make-fire* (--) stoke-firebase* diamond-filter-topdown* bit-blit-to-screen ;

 : stoke-firebase* (--) xwidth 0 DO pseudo-random-residue adjust-color LOOP ;

 : diamond-filter-topdown* (--)

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Two July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

 yheight 2 – DO

 xwidth 2 – DO

 diamond-avg attenuate store-to-row

 LOOP

 restore-row-minus2*

 LOOP

 restore-lasttwo-rows ;

Related Reading:

For even more hair-raising adventures in reverse engineering silicon, see;

http://adamsblog.aperturelabs.com/2013/01/fun-with-masked-roms.html

Novix NC4016 was a 16-bit Forth microprocessor from Chuck Moore’s silicon startup Novix Inc. in 1985 that was

enhanced by Harris Semiconductor to the radiation hardened RTX2000RH. The latter was used by NASA in various

satellites and space vehicles.

mailto:assad.ebrahim@alum.swarthmore.edu
http://adamsblog.aperturelabs.com/2013/01/fun-with-masked-roms.html

Computer Architecture & Programming – Using Debug – Part Three July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Objective. This worksheet uses DEBUG to explore, illustrate, discover key points about Computer Architecture and

Programming. This continues from Parts 1,2,3. This worksheet explores the x86 instruction set using debug.

Flags (Processor Status) Register

The flags register is a bank of 8 bits, each of which signals a particular state that the processor may be in after

performing an arithmetic (inc, dec, add, sub, mul, imul, div, idiv), logic (and, or, not, xor, neg), or comparison (test,

cmp) instruction. Note, the states are independent and not mutually exclusive, i.e. a single computation may

set/clear multiple flags. Example: xor ax,ax will set ZR (zero) and PE (even parity).

Grouped logically, the flags are as below. Note that debug shows the state not whether the value is 1 or 0, to avoid

error, and to emphasize that this are state not numerical variables.

Auxilliary (AF) = set to auxiliary carry (AC=1) if unsigned overflow happens on the low nibble, else no-auxilliary-carry

(NA=0)

Carry (CF) = set to carry (CY=1, use stc) if unsigned overflow happens on the indicated byte or word (eg inc al, or inc

ax), else no-carry (NC=0, use clc))

Overflow (OF) = set to signed overflow (OV=1), e.g. when 100+50 exceeds +128, else no-overflow (NV=0) when

calculation is within signed range. What about -100-50? (underflow?)

Sign (SF) = set to negative (NG=1) if result is negative, else plus (PL=0) when computation is positive What if

computation is zero – is the flag unchanged?

Parity (PF) = set to 1 (PE) if lower byte has even number of 1 bits else 0 (PO) when LSB has odd number of 1 bits

Zero (ZF) = set to zero (ZR=1) if computation results in a 0, else non-zero (NZ=0)

Direction (DF) = set to down (DN=1, use std) if processing data chain works down from high memory to low memory,

else works up (UP=0, use cld) in the opposite direction; (note the convention in 8086 is to grow down in memory)

Interrupt (IF) = set to enable interrupts (EI=1, use sti) if interrupts are enabled, else disable interrupts (DI=0, use cli)

when interrupts are disabled

How to toggle them in Debug? Use rf and then the flag value to be set/cleared. Separate flags with spaces to specify

multiple states at the same time.

How to toggle them in code? How to view them in code? Via a bitmask? Hex to bin? See Section X & exercises

How to ensure the flags start in a fresh state for a piece of code before it runs (both in debug and in code!) What

about for a subroutine – are the flags put on the stack and then restored?

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Three July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Reverse engineering instructions using DEBUG

Xor

Exercise: What does XOR do? Verify the truth function. What is XOR(AX,AX) = ?

xor ax, ax ; ax = 0x0000

Repz; stosw;

Exercise: Explain how this piece of code works and what it does? Verify it in debug.

Mov ax, FFFE ;

mov di, 0900 ; offset (ES:DI)

mov cx, 006 ; counter

repz ; repeat until zero the paired instruction (stosw) decrementing CX counter. If zero (separate from zero

flag ZF) stop loop and continue rest of code; else run paired instr & iterate

stosw ; store single word (2 bytes) from AX to memory location ES:DI; increment/decrement by 2 bytes

depending as direction flag (DF) is DN/UP;

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Three July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Write tester code (test harness) -

Inspect the unassembled code

Exercise why do lines 103 and 106 look backwards? (Ans. 8086 is little-endian...)

Set computer into known state:

Set IP to 0100 and registers to 0 (ax, bx, cx, dx, si, di)

Set 8 flags in a known state (nv dn ei pl nz na po nc)

Check the code and stack memories

a) Because we’re in the tiny memory model (CS=SS=DS) we shouldn’t use memory near 0x0100 (below is

stack, above is code).

Check the memory window expected to be used (extra segment for string processing)

Trace through first 3 instructions

a) Notice the three registers are set

b) Notice mov does not change flags

c) Notice that REPZ/STOSW are treated as a single instruction and pointed to together at IP=0109h

Now trace first time the repz/stosw and afterwards inspect the ES memory window. Notice:

a) IP does not move

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Three July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

b) AX (value to copy) did not change

c) CX counter decremented by 1

d) Notice DI (offset into ES to copy to) decremented by two (to 0x08FE) since DN (down) flag is set

e) Notice no flags changed state, in particular ZF flag stayed NZ (nonzero)

f) Notice the AX data is copied into memory in little endian order (0xFFFE written FE FF in memory, writing

downward in memory, according to 8086 convention)

Now trace through 5 more times.

a) Notice we now see the behaviour of REPZ/STOSW in practice: REPZ repeats until CX is zero. So each

iteration means CPU decrements CX counter; test if zero; go past next instruction if zero and stop loop;

b) else run next instr & then return

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Three July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Notice:

- cx decremented to zero but the NZ flag did not move… ???

Exercise: Reset the loop and set the direction flag to UP. See if the STOSW command now uses DI in the opposite

direction.

 It does

After two:

After the rest:

Remarks: CISC approach to computing – hindrance or a help?

REPZ/STOSW illustrate the CISC (complex instruction set computer) approach: the above is a common programmer

desire: filling up a block of memory with a value (usually 0x0 to clear it out). Rather than have the programmer also

have to write code to do this, why not provide a hardware capability (function) to do it? At once a convenience thing

and a marketing thing --- novel, unique, advanced, programmer friendly, raises a barrier against leaving the product

(code incompatibility, and need greater programmer skill to leave).

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Three July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

True, on the one hand, but MISC (Chuck Moore) would say this adds additional burden. Look at the above subtleties.

One has to understand now the specific implementation in order not to be caught by details such as assuming that

the ZF will be set when CX reaches 0. Or making sure that the direction flag is set correctly.

The equivalent loop in assembly code would be more transparent.

Exercise: Timing

Is the repz/stosw instruction faster than the equivalent assembly code?

Write the equivalent assembly code.

Setting flags in code

https://stackoverflow.com/a/39816897/181638

Note that only direction flag (DF) is considered a control flag, and so has specific instructions to set/clear it (std and

cld). The rest are status flags. But even so there are ways to reset the flags using lahf (load flags into ah) and sahf

(store flags from ah). If one wants to work with the stack, pushfd (push flags data onto stack) and popfd (pop flags

data from stack).

Other flag manipulating commands:

clc (clear carry), stc (set carry), cmc (?), cmovcc, adc, setcc

LAHF

Interrupt Enable (IF) can be manipulated with cli and sti.

mailto:assad.ebrahim@alum.swarthmore.edu
https://stackoverflow.com/a/39816897/181638

Computer Architecture & Programming – Using Debug – Part Four July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Objective. This worksheet uses DEBUG to explore, illustrate, discover key points about Computer Architecture and

Programming. This continues from Parts 1,2,3. This worksheet explores the x86 instruction set using debug.

Numbers

Binary

0001 0x1

0010

0011

…

1000 0x8

1001

…

1111 0xF

Binary coded decimal

Using binary to encode a decimal digit. This is wasteful as codes 10-15 (6 codes out of 16, or 38%) are not used.

It is one way to work with decimal numbers on a 4-bit machine (early 4004 and 4040 were this way). Early

calculators were this way.

[1] Busicom 141-PF and Intel 4004

http://www.vintagecalculators.com/html/busicom_141-pf_and_intel_4004.html

Exercise: write these early Intel chips in binary coded decimal: 4004, 4040, 8008, 8080, 8086, 8088

0100 0000 0000 0100

0100 0000 0100 0000

1000 0000 0000 1000

1000 0000 1000 0000

1000 0000 1000 0110

1000 0000 1000 1000

Hex is binary compressed and concatenated

8086 is little endian

Size matters (nybbles, bytes, words, double-words, and quad-words)

Context is byte (8 bits) or word (16 bits).

Sign matters (unsigned and signed arithmetic)

Unsigned (positive only) number: 0xFF (255=2^8) or 0xFFFF (65,536=2^16)

Signed (positive or negative) number: -1 = 0xFF. Highest bit (msb) set means negative. So 0111 1111b is max

positive number (+127). 1000 0000b is max negative number (-128), and 1111 1111b is -1, i.e. this is a wrap-around

counting. 0000 0000b is 0. This scheme is called two’s complement.

Exercise: How to figure out what 1011 1011b is?

mailto:assad.ebrahim@alum.swarthmore.edu
http://www.vintagecalculators.com/html/busicom_141-pf_and_intel_4004.html

Computer Architecture & Programming – Using Debug – Part Four July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Fixed Point

Floating Point

Comparison instructions

Comparison instructions are the heart of computing decisions.

Conditional jump instructions are a logical soup of multiple ways to say the same thing.

JMP – standard goto, spaghetti code if used badly, Wirth and others on structured programming (subroutines,

functions, etc.)

JG A,B – Jump if A > B (signed), i.e. if ZF=0 and SF=0

JA A,B – Jump if A > B (unsigned), i.e. if ZF=0 and CF=0

JC – Jump if Carry (8 or 16-bit) is 1

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Five July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Objective. This worksheet uses DEBUG to explore, illustrate, discover key points about Computer Architecture and

Programming. This continues from Parts 1-4. This worksheet explores the x86 instruction set connecting computer

to input/output ports.

Input/Output Ports

It is not possible to do anything without on a computer without interfacing with the outside world. Every computer

requires input, performs some processing, and then must take some action (produce some output), whether this is

displaying something on a screen, or some other more targeted action.

8086 and similar computers had several peripheral chips that supported them. Later, single chip computers

incorporated all elements onto a single die.

In addition, separate peripheral devices can be connected to computers (keyboard, mouse, joystick, data acquisition

equipment, sensors, monitor, hard disk, etc.) Each of these typically has a device driver that allows accessing and

working with the device.

Excellent:

https://mysite.du.edu/~etuttle/electron/elect51.htm

http://physweb.bgu.ac.il/COURSES/SignalNoise/interrupts.pdf

https://www.electronicshub.org/types-of-computer-ports/

Graphics mode: http://www.delorie.com/djgpp/doc/ug/graphics/vga.html

 Historical cards: CGA, EGA

 VGA mode 0x13 (320x200, 256 colors, VGA compatible graphics card)

 DOS text mode (normal) 0x03

 To draw something on the screen, you draw to the graphics card’s memory, i.e. memory mapped address:

VGA memory is located at physical address 0xA0000 through to 0xAFFFF (64k bytes, or 320x200 bytes)

In 8086 segmented memory model this would be A000:0000

A pixel is displayed by giving x,y coordinates (0-319, 0-199) and a color (0-255)

The coordinates are mapped onto memory as follows:

0xA0000 + x + 320*y

Exercise: explain why this formula makes sense.

Two ways to create graphics: 1) poke them directly into the memory card memory, pixel at a time; 2) create a

memory buffer and copy (bitblt) it to the memory card.

This takes more memory, as one replicates a 320x200 byte framebuffer in memory (64k bytes).

Exercise: Put output onto the memory card directly, and with a memory buffer copy.

What colors can you choose? Colors are controlled by a hardware component called the palette, which is a table

listing the actual color values for each of the 256 color values that you can display. When you first select a video

mode the first 16 entries in the palette (colors zero to fifteen) will be set to the standard DOS text mode colors

(black, blue, green, cyan, red, magenta, brown, light grey, dark grey, pale blue, pale green, pale cyan, pale red, pale

magenta, yellow, and white), but the other 240 colors may be set to different values depending on the machine. In

mailto:assad.ebrahim@alum.swarthmore.edu
https://mysite.du.edu/~etuttle/electron/elect51.htm
http://physweb.bgu.ac.il/COURSES/SignalNoise/interrupts.pdf
https://www.electronicshub.org/types-of-computer-ports/
http://www.delorie.com/djgpp/doc/ug/graphics/vga.html

Computer Architecture & Programming – Using Debug – Part Five July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

order to use anything more than those 16 default colors, you must set the palette to some new values of your own,

which is done by writing a palette index to hardware port 0x3C8 followed by three color values to port 0x3C9, eg:

Port 0x3DA bit 3 holds the retrace period of the display function.

Other graphics resources:

x2ftp - ftp://x2ftp.oulu.fi/pub/msdos/programming/

The most comprehensive collection of DOS graphics coding material on the net.

PCGPE - ftp://x2ftp.oulu.fi/pub/msdos/programming/gpe/

A good clear introduction to many VGA and general graphics coding techniques, although all the example

programs are in Pascal.

Abrash in DDJ - ftp://x2ftp.oulu.fi/pub/msdos/programming/docs/graphpro.lzh

The "legendary" articles written by Michael Abrash and published in DDJ between 91/93, covering mode-X,

polygon rasterisation, and many other fascinating topics.

mailto:assad.ebrahim@alum.swarthmore.edu
ftp://x2ftp.oulu.fi/pub/msdos/programming/
ftp://x2ftp.oulu.fi/pub/msdos/programming/gpe/
ftp://x2ftp.oulu.fi/pub/msdos/programming/docs/graphpro.lzh

Computer Architecture & Programming – Using Debug – Part Six July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Objective. This worksheet uses DEBUG to explore, illustrate, discover key points about Computer Architecture and

Programming. This continues from Parts 1-4. This worksheet explores the x86 instruction set connecting computer

to input/output ports.

Pointers & Memory

Thus far, we’ve been able to store and manipulate data in registers (mov) and store and fetch data from the stack

(push, pop). Many computing operations will require more memory than the few hundred bytes available this way.

Memory is a contiguous row of bytes, sort of like a row of lockers. Each byte has an address. You can store or fetch

from the address.

On an 8086, there are 20 bits worth of addressable memory, or 2^20 = 1,048,576 bytes, or 1MB. But the word

length, and therefore the address length, is 16 bits, able to address 2^16 = 65.536 bytes, or 64KB at a time. Hence,

8086 uses a segmented memory model. Memory can be partitioned into 2^4 = 16 discontinuous segments, each of

64KB. What are these segments?

In hex:

0:0000, 1:0000, 2:0000, …, E:0000, F:0000

But in practice the segments have been done so that there are overlaps, i.e. the 64KB window can be positioned to

start anywhere (within 10h bytes).

So we have:

0000:0000, where 0xxx:xxx0 is the full memory, and the middle bits overlap (represent the same part of the absolute

address).

Tiny memory model: everything runs within a single segment (DS=ES=SS=CS)

The Stack runs from 0x0 to 0xFF. Stack pointer (SP) here is at 0xFD, and the stack will grow downwards in memory

(toward smaller values).

Code runs from 0x100 onward – however much is needed. IP points to 0x100 at the start. Let’s reserve 4000h bytes

(or 3 x 4096d, or 12KB) of memory for code (Moore’s 1000 instructions, each (simple) instruction taking 3 bytes of

memory, one byte for the instruction, and two bytes for the parameter word).

So we can start our offset into memory from DI=4100h.

Let’s store 0xFFFE into DS:DI, i.e. 073F:4100.

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Six July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Notice:

1) both accepted instructions worked according to the current (DS) segment by default.

2) [] specifies a number as an address (AX is a named address, [4100] is a numbered address, just like houses

in the UK can have named or numbered addresses).

3) OK to do arithmetic (+ only) within [], but it treats the arithmetic linearly, not as segments.

4) Segment notation : is not recognized, and * is not allowed within []

Let’s test #1. If we switch DS and re-run the program.

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Six July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

This confirms that by default DEBUG references short memory based on the DS (data segment) pointer.

Notice at the far right, DEBUG shows the full memory address for the short memory move, i.e. DS:483F

Can we move from all registers to memory? All except IP.

What do you observe? The 8086 is tuned for moving from AX to memory – this only takes a 1 byte instruction. All

the others are 2 byte instructions (e.g. 891E --- or 0x1E89 – to move from BX to memory, MOV [x], BX).

How do we specify in code a different segment, say the ES segment?

Use different instructions that know to be based on the ES segment and offsets into it.

How do we set the CS, ES, and DS segments in code?

Code segment cannot be set in code --- that would be a huge security hole as CS could be set to execute to places in

memory.

DS and ES can be set through the stack (pop).

Can we move a byte register to memory?

Can we move a literal word to memory? A literal byte?

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Six July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

When moving registers, the size of the operand (parameter) has been unambiguous – 2 bytes if AX, 1 byte if AL or AH

for example. When moving literals to memory we’ll need some way to specify this.

The processor needs to know how many bytes to read off the code stream.

FFFE is less ambiguous (if we assume the maximum size of a parameter is 2 bytes). FF is ambiguous: it could be

0x00FF or 0xFF.

Moving data between segments.

MOVSB

MOVSW

LODSB

LODSW

LEA

LES

LDS

STOSB

STOSW

XCHG

XLATB

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Seven July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Objective. This worksheet uses DEBUG to explore, illustrate, discover key points about Computer Architecture and

Programming. This continues from Parts 1-4. This worksheet reverse engineers machine language for the x86 using

debug, and comments on CISC vs. MISC.

References:

[1] Intel x86 Assembler Instruction Set Opcode Table http://sparksandflames.com/files/x86InstructionChart.html

Summary

Using debug to systematically explore the machine code of x86 chip shows the true complexity behind a CISC chip

like the x86.

There are 0xBF varieties of add <mem>, <8-bit reg>, and 100h-0xc0 varieties of add <reg>, <reg> (8-bits).

There are an equal number of varieties of add <mem>, <16-bit reg>.

And then an equal number of add <8-bit reg>, <mem>, and then add <16-bit reg>, <mem>.

Then OR, then sub.

The number of individual instructions is high, and the number of coding varieties is a combinatorial explosion.

Imagine the number of gates in the chip required to implement such a design.

This leads to an over-riding desire – surely it should not be this hard to program a computer? Surely the design of

the computer itself should not be that complex?

And you reach the line of thinking of Chuck Moore, the inventory of Forth, and thereafter of simple hardware.

So one should study x86 to get a feel for what CISC looks like, learn it well enough to do something useful in it, and

then study Forth.

And then the Forth chips … in history, in reality, in FPGA form. See Appendix 1.

Redundancy: 31C0 and 33C0 both map to XOR ax,ax

Does it matter? Not really. Both get the job done. An assembler will probably pick a standard form (perhaps lower

numbers). The mapping table may be larger but it is symmetric which is a benefit.

A larger response to a similar observation: http://www.mlsite.net/blog/?p=76

Hello MXH. Just a note on your "Redundant Opcodes" article. Some of the redundancies you list are desirable so as

not to break the symmetry of the operations table. E.g. 31C0 and 33C0 both give xor ax,ax, but are both required in

order that their respective tables are complete 31 is xor *,reg16 while 33 is xor reg16,* where the * denotes

iteration.

mailto:assad.ebrahim@alum.swarthmore.edu
http://sparksandflames.com/files/x86InstructionChart.html
http://www.mlsite.net/blog/?p=76

Computer Architecture & Programming – Using Debug – Part Seven July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Another example is based on size. AX and AL are optimized for arithmetic operations. E.g. 04HH is add al, imm-

byteHH. The redundant operation you list 80COHH is again needed to complete the symmetry of the 80 op-code

table, and is 1 byte longer.

A third example is a different kind of symmetry where the redundancy arises from a processing distinction. Example

opcode 82 has the same output as opcode 80 but is handled differently by the processor which sign-extends the

immediate byte to word for 0x82 and does not sign extend for 0x80. This is an immaterial distinction for byte literals

but a material one for word literals (81 and 83) so is retained for symmetry.

The key question, which is not addressed in your article, is whether there is a downside of these redundant

opcodes? In terms of silicon or micro-code to decode the instructions, I wouldn't expect any, but someone more

knowledgeable would need to confirm.

The only downside I can see is the philosophical one which you express in your article. But this is in contradiction

with established practice in mathematics as well, where, for example, in Pascal's triangle, you will find that C(N,1) =

C(N,N-1), and many other identities where one side is “redundant”. The point in mathematics is that one values the

symmetry because it allows automation without having to have all sorts of specific logic tests because the

redundancy has been manually pruned out. Setting aside the opcodes which lead to smaller code (these should not

be classed as redundant), I expect the same argument will hold for the symmetry preserving ones.

Hope the perspective helps.

There are tricks for more compressed code.

To zero out the ax register you can use: xor ax,ax which is 2 bytes (31C0) or mov ax,0000 which is 3 bytes (B80000)

because the 16-bit immediate value needs to be specified. (Exercise: Prove that the xor instruction does this.)

(setup: rax FFFF)

Many variations: there are 2050 variations of ADD instruction on the x86.

The first 1024 variations provide mem/reg and reg/reg capability. The second 1024 variations provide mem/imm

and reg/imm capability for 8-bit and 16-bit immediates, both signed and unsigned. The last 2 provide optimized

(short code) versions of reg/imm for use with the accumulator register AX or AL. All other registers will use the

longer forms (longer by 1 byte).

(Note: opcode 82 has the same output as opcode 80 but is handled differently by the processor which sign-extends

the immediate byte to word for 0x82 and does not sign extend for 0x80. This is an immaterial distinction for byte

literals but a material one for word literals (81 and 83).)

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Seven July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

https://github.com/aquynh/capstone/issues/238

This is huge amount of complexity.

Why would this have been a design decision? Remember that Stephen Morse, the designer of the Intel 8086 was a

software engineer and was looking to make things efficient for software developers.

The answer is that Intel was looking to provide an assembly language interface that would, in some sense, abstract

away the machine. A programmer could perform any function in (almost) any possible mode with (almost) any

possible registers, memory, and immediate values as targets.

reg/lit

reg/mem

reg/reg

mem/lit

mem/reg

even mem/mem is possible using string operations

A key reason is space – by having a single machine instruction (of 2-4 bytes) complete a single abstract operation,

the end user program was not only easier to write, but also substantially smaller in machine code. This was

important given the 64K memory limit on 16-bit computers.

Compiled code would be similarly smaller and compressed.

An additional reason is the simplicity for the programmer and/or compiler writer as abstract 3G languages could be

mapped much more easily one-to-one with machine instructions, simplifying the adoption of a processor by making

it easier to create the suite of development tools it would require.

Exercise: how to implement such a situation?

Brute force would be if all of these are implemented in silicon, i.e. using gates.

CISCs break complex instructions into micro instructions (microcode)

Introducing microcode as a way to save silicon.

Introducing Forth as a simple microcode.

References:

The bible are Agner Fog optimization manuals [1] which contain quite a detailed description of the microarchitecture

of intel and AMD CPUs from the pentium era till today. They are based on the extensive reverse engineering done by

the author.

David Kanter microarchitecture articles at RWT [2] are also quite good.

Intel manuals are quite detailed as well.

[1] http://www.agner.org/optimize/

[2] http://www.realworldtech.com/cpu/

You can see btw how much time/effort goes into understanding a particular chip.

Exercise: using debug to read machine code:
B0 = mov al, ? = mov bl, ? = mov cl, ? = mov dl

mailto:assad.ebrahim@alum.swarthmore.edu
https://github.com/aquynh/capstone/issues/238
http://www.agner.org/optimize/
http://www.realworldtech.com/cpu/

Computer Architecture & Programming – Using Debug – Part Seven July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

? = mov ah, ? = mov bh, ? = mov ch, ? = mov dh
? = mov ax, ? = mov bx, B9 = mov cx, BA = mov dx
BF = mov di, ? = mov si,
? = push ax, ? = push bx, ? = push cx, ? = push dx
? = pop ax, ? = pop bx, ? = pop cx, ? = pop dx

Not allowed
? = mov ds, ? = mov ss, ? = mov es
Given one cannot use mov to set DS, SS, ES registers, how to change these in code?
Use pop instructions and the stack.

Note that the machine language instructions 0x26 ES: and 0x2E CS: are segment override prefixes… examples of
usage

What are segment override prefixes, and how are they used?
Which segment register that is used in the address calculation depends on the register that is used for baseReg.
The DS register is assumed for the segment unless baseReg is the register BP, in which case SS is assumed.
However, any segment register can be explicitly specified using what is called a segment override prefix (discussed
below). Also, some special instructions may assume other segment registers
https://ece425web.groups.et.byu.net/stable/labs/8086Assembly.html

A segment override prefix allows any segment register (DS, ES, SS, or CS) to be used as the segment when

evaluating addresses in an instruction. An override is made by adding the segment register plus a colon to

the beginning of the memory reference of the instruction as in the following examples:

 mov ax, [es:60126] ; Use es as the segment

 mov ax, [cs:bx] ; Use cs as the segment

 mov ax, [ss:bp+si+3] ; Use ss as the segment

EE = out dx, al (value in AL, port number in DX if over 0xff)

mailto:assad.ebrahim@alum.swarthmore.edu
https://ece425web.groups.et.byu.net/stable/labs/8086Assembly.html

Computer Architecture & Programming – Using Debug – Part Seven July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Exercise: What instructions are BC and BD?

Exercise: what are the push machine code instructions?

Exercise: What instructions are 54,55,56,57; 5C,5D,5E,5F

Exercise: What machine instructions are pushf, popf?

Appendix 1 – Reverse Engineering x86 machine language

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Seven July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Note:

e command starts by default in the DS data segment.

a and u commands starts in the CS code segment.

Exercise: Reverse Engineer Machine Language x86 using the e command.

Observe the complexity in the CISC x86 processor! Every possible combination of registers and memory access types

for each of the many different basic instructions (add, sub, etc.)

File: reveng.com has 0040ff to 0200, i.e. three instruction families: 00 add, 01 add, 02 add

ADD (a lot of classes) 1026 variants, 2 basics (0x04, 0x05) and 1024 flavors of advanced…

OR (a lot of classes) same with OR.

Note --- the exploration of the first 0x00FF instructions (0x100, 256d instructions) is by hand in debug. Once the

pattern of the next sets are verified in the first few instructions in debug, one uses a hex editor to hand edit the 01

instructions (next 256), and then to copy paste the the 0x01 instructions and search-replace the 01 first with 02

(watch out for 0x0101 which should be 0x0201), and then repeat for 03 instructions.

Then do the same for the OR instructions (08, 09, 0A, 0B) – another 1024 instructions.

This gets us to 2048+2+2+2+1 = 2055 instructions up to 0x0E.

The file to illustrate these instructions is runs to 085d (75d bytes of memory since we start at 0x100h, which is 1885d

instructions).

(It is useful to have a hex calculator)

See Toolbox for:

HexEditor (HxD)

Hex Calculator (Lite)

Why is the sequence the way it is? Bit patterns – 3 bits to encode 8 selections.

https://www-user.tu-chemnitz.de/~heha/viewchm.php/hs/x86.chm/x64.htm

mailto:assad.ebrahim@alum.swarthmore.edu
https://www-user.tu-chemnitz.de/~heha/viewchm.php/hs/x86.chm/x64.htm

Computer Architecture & Programming – Using Debug – Part Seven July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Seven July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Direction Flag

CLD (0xFC) clears direction flag (df) which is direction UP.

STD (0xFD) sets direction flag (df) which is direction DOWN.

Conditional Jumps

Notice that 0xFF (-1 signed) specifes a 1 byte move forward, so the formula is IP = IP* + REL, where IP* is where IP

would have pointed after the jump is processed.

So at address 0x100: JO FF (0x70ff) means IP*=102, REL=-1, so IP=101.

Whereas at 0x100: JO 01 (0x7001) means IP*=102, REL=+1, so IP=103.

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Seven July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Optimizations

Mov ax, 0000 3 bytes vs. Xor ax,ax 2 bytes

Out port

Can only use AX as the target

Out dx,ax not out dx,bx etc.

Undocumented Instruction

What does C1 do?

Let’s check:

Tracing the C1 instruction consumed C1EB02 (3 bytes) and advanced IP to FF00

Setting all registers to 0.

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Seven July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Tracing through 4 successive commands – no change.

Setting AX=10h – no change

Setting BX=20h --- change! (same whether AX=10h or 0h, hypoth indep of AX)

Param: 0x02eb

BX: 20h -> 08h -> 02h -> 00

Starting from BX=200h

BX: 200h -> 80h -> 20h -> 8h -> 2h -> 0h

0010 0000 0000 -> 1000 0000 -> 0010 0000 -> 1000 -> 0010 -> 0000

Looks like right shift two. So perhaps C1 EB is the command, and 02 is the parameter

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Seven July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Then BX=0000

Test: 0x0C = 1100b.

Sure enough: 0x0c -> 0x03 -> 0x0 because 1100b -> 0011b -> 0000b

Test: 0x06 = 0110b.

Sure enough: 0x6 0> 0x1 -> 0x0 because 0110b -> 0001b -> 0000b

Test: 1011 0000b 0xB0

Hypoth: 0010 1100 -> 0000 1011 -> 0000 0010 -> 0000 0000, i.e. B0 -> 2c -> 0b -> 2 -> 0

Exactly right!

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Seven July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Test parameters: Hypoth, the 02 is the number of places to right shift. So we will do right shift by 3, then 2, then 1.

Hypoth: 0xb0. Shift by 3 right, 2 right, then 1 right.

1011 0000 -> 0001 0110 -> 0000 0101 -> 0000 0010

B0 -> 16 -> 5 -> 2

Exactly right!

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Seven July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Conclusion: C1 EB is right shift by hh bits.

I suspect that C1 will match D1, but with literal number of bits hh

Then C1 is rol*16, EB is shr bx, hh is number of bits.

Suspect C0 matches D0 with literal number of bits hh. Appears correct.

Eb 02 is 0x02EB = 747d

BX went from 0032 (=50d) to 000C (=12d); NG->PL; NA->AC; PO->PE; all else stayed the same.

747d % 50d = 47d = -13d…

We can test this out.

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Seven July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

747d / 10d = 74 R 7. BX then holds 3, which is 10-7.

747d / 50d = 14 R 47. BX then holds 12 which is 50-

Appendix 1. Forth Chips

http://www.forth.org/cores.html

Jeff Fox: http://www.ultratechnology.com/chips.htm

J1 Forth CPU (James Bowman): http://www.excamera.com/sphinx/fpga-j1.html

https://hackaday.com/2010/12/01/j1-a-small-fast-cpu-core-for-fpga/

mailto:assad.ebrahim@alum.swarthmore.edu
http://www.forth.org/cores.html
http://www.ultratechnology.com/chips.htm
http://www.excamera.com/sphinx/fpga-j1.html
https://hackaday.com/2010/12/01/j1-a-small-fast-cpu-core-for-fpga/

Computer Architecture & Programming – Using Debug – Part Seven July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Multi-computer (parallel Forth chip): Green Arrays GA144: http://www.greenarraychips.com/

 (In UMR I studied super-computers with multiple cores. Well, here is now GA144 with 144 cores.)

 Green arrays school: http://school.arrayforth.com/

(Andrew Holme) Homemade GPS Receiver: http://www.aholme.co.uk/GPS/Main.htm

(Andrew Holme) Mark 1 pure-TTL Forth Computer: http://www.aholme.co.uk/Mk1/Architecture.htm

(Richard Jones) JonesForth: https://rwmj.wordpress.com/2010/08/07/jonesforth-git-repository/

RTX2000, Novix chip, then shboom, then F18,

 RTX2000: According to a couple of ads I kept from back then, the RTX2000 ran more than one Forth

instruction per cycle, typically about 16MIPS @ 12MHz, and peaked out at 50MIPS. I posted a scan of one of the ads

at http://wilsonminesco.com/stacks/RPN_efficiency.html . You can see by the chart in that ad that as long as you

didn’t need floating-point, the RTX2000 dramatically outperformed the ‘386

https://en.wikipedia.org/wiki/RTX2010

Facebook group: https://www.facebook.com/groups/PROGRAMMINGFORTH/

Forth starter: Forth is great. Close to the Hardware. If you want to read about the basiscs – see A Start With Forth at

https://wiki.forth-ev.de/doku.php/en:projects:a-start-with-forth:start0 or my current Forth Bookshelf at

https://www.amazon.co.uk/Juergen-Pintaske/e/B00N8HVEZM you can build your own CDP1802 there and the EP32

https://www.amazon.co.uk/FIG-Forth-Manual-Documentation-Test-1802-

ebook/dp/B01N42VLJE/ref=asap_bc?ie=UTF8 and https://www.amazon.co.uk/EP32-RISC-Processor-Description-

Implementation-ebook/dp/B071D3XMPS/ref=asap_bc?ie=UTF8 for 1802 see as well the Core at https://wiki.forth-

ev.de/doku.php/projects:fig-forth-1802-fpga:start

Starting Forth: https://www.forth.com/starting-forth/

Thinking Forth:

Footsteps Empty Valley: Tings Footsteps book explains about the beginnings of Forth on Gates

https://www.amazon.co.uk/Footsteps-Empty-Valley-issue-3-ebook/dp/B06X6JGM5L/ref=asap_bc?ie=UTF8

> > A Forth Story

> > Allen Cekorich

> > Walnut Creek, California

> > Forth Dimensions, July/August 1995

Arduino, Cortex-M, PIC24 (16-bit), 8-bit Atmel, PIC16 (8-bit)

mailto:assad.ebrahim@alum.swarthmore.edu
http://www.greenarraychips.com/
http://www.aholme.co.uk/GPS/Main.htm
http://www.aholme.co.uk/Mk1/Architecture.htm
https://rwmj.wordpress.com/2010/08/07/jonesforth-git-repository/
http://wilsonminesco.com/stacks/RPN_efficiency.html
https://en.wikipedia.org/wiki/RTX2010
https://www.facebook.com/groups/PROGRAMMINGFORTH/
https://wiki.forth-ev.de/doku.php/en:projects:a-start-with-forth:start0
https://www.amazon.co.uk/Juergen-Pintaske/e/B00N8HVEZM
https://www.amazon.co.uk/FIG-Forth-Manual-Documentation-Test-1802-ebook/dp/B01N42VLJE/ref=asap_bc?ie=UTF8
https://www.amazon.co.uk/FIG-Forth-Manual-Documentation-Test-1802-ebook/dp/B01N42VLJE/ref=asap_bc?ie=UTF8
https://www.amazon.co.uk/EP32-RISC-Processor-Description-Implementation-ebook/dp/B071D3XMPS/ref=asap_bc?ie=UTF8
https://www.amazon.co.uk/EP32-RISC-Processor-Description-Implementation-ebook/dp/B071D3XMPS/ref=asap_bc?ie=UTF8
https://wiki.forth-ev.de/doku.php/projects:fig-forth-1802-fpga:start
https://wiki.forth-ev.de/doku.php/projects:fig-forth-1802-fpga:start
https://www.forth.com/starting-forth/
https://www.amazon.co.uk/Footsteps-Empty-Valley-issue-3-ebook/dp/B06X6JGM5L/ref=asap_bc?ie=UTF8

Computer Architecture & Programming – Using Debug – Part Eight July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Objective. This worksheet uses DEBUG to design and write a program, and sees how Forth is a natural evolution of

assembly language.

Context A computer works with numbers. Humans need to see those numbers and provide input from a keyboard

or input device that works with digits. A fundamental interface is the conversion between REGISTER/MEMORY

VALUES (16-bits) to ASCII codes for input/output, i.e. NUMERIC TO ASCII CONVERSION.

Going from number to asci, we have binihex (probably better as hex2asc). Going from ascii to number, we have

asc2hex.

Program: binhex (3Dh bytes (62d bytes), less than 40h bytes = 64d bytes)

C7 06 00 02 00 F0 B1 04 53 5B 53 8B 16 00 02 21

D3 B0 04 FE C9 F6 E1 51 88 C1 D3 EB B1 04 D3 EA

89 16 00 02 B2 30 80 FB 0A 7C 02 B2 37 00 DA B4

02 CD 21 59 83 F9 00 77 D0 5B B4 4C CD 21

Entering

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Eight July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

Save it to file

Nbinihex2.com

Rbx

0000

Rcx

3e (63d)

W

When loading to run

Nbinihex2.com

L

Rsp

00fd

Rbx

F1e2

G

Pushing onto the stack: sub SP, 2 then mov word data to sp

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Eight July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

There’s the first F printed

Then the 1 printed

Then the E printed

Then the 2 printed

So this works.

What does this look like in Assembly?

See binihex_v2.asm

What would this look like in Forth?

: adjust-mask (mask -- mask') 4 rshift ;

: print-char (digit --) dup $A < if $30 else $37 then + emit ;

: binihex (val --) $f000 4 0 do 2dup and 3 i - 4 * rshift print-char adjust-mask loop 2drop ;

Further reflections and program of work

06-Aug-2018 (Mon 11:00)

Reflections on Assembly, C, Forth, and Chip Design

What do we learn from studying the fire.com program?

It is possible to do a surprising amount with very little! The key here is utilizing the complex instructions that 8086

provides (e.g. repz/stosw or repz/movsw), though with a bit of expansion one could make this into a loop with a

different processor (more bytes, possibly slower).

Trying to understand a program from hand-optimized machine code is tough but do-able; doing the same from

mailto:assad.ebrahim@alum.swarthmore.edu
http://fire.com/

Computer Architecture & Programming – Using Debug – Part Eight July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

automatically generated machine code by an assembler is harder; from a compiler like GCC it is almost

impossible. Why?

 - machine code sends machine instructions with no additional context; you know *what* but you don't know

why

 - assemblers (in theory) attempt a one-to-one mapping between assembler instructions (mnemonics) and machine

instructions (opcodes), using directives to guide the choice of the right opcode. The assembly code should be well

commented --- this is what should provide the context.

C (3GL) provided structured programming by trading off on time and space costs because the subroutines it

introduced added space (additional code) and execution time to preserve the processor state and then restore it.

It provided portability by targeting a tightly specified "generic" processor, against which interface then targeted

compilers could be written to optimize for various things, be it execution time, size, whatever.

So the toolset expands to knowledge of this generic processor and how a compiler will translate to the real

underlying machine. Most programmers won't need to know about the particular processor.

This is the principle of abstraction layers and interfaces (design architecture).

The principle is that information hiding through abstraction and interfaces makes it possible for teams to work in

parallel, and the work of each is complementary to the work of the other. The better and tighter the compiler

writers are, the better the eventual code is. The non-shifting target for the application designers frees up more of

their time and thought to writing applications instead of keeping up with processor changes. The cost of providing

(basic) compilers can be passed on to the chip developers who are incentivized to provide correct and good tools so

that their chips are adopted. The cost of R&D to develop better compiler techniques is passed on to the professional

compiler writers who are incentivized to make theirs much better than the ordinary ones provided by the chip

makers, to justify costs of getting these professional tools.

There is a lot in the above design that follows modern economic thinking: specialization for greater productivity,

incentives for innovation, competition for continuous improvement, and the belief that all of this is better for

humanity as a whole.

Assembly (2GL) did this without portability, and without requiring then the complex syntax parsing needing a

compiler. An assembler is a simpler thing because of the mapping between mnemonics and opcodes. It can be

simpler because it requires the programmer to understand very well his hardware. I.e. the programmer is

programming the hardware directly, and using the assembler to take out the tedium of counting bits, bytes,

maintaining references by hand, and coding the structures manually.

What do assembler procs do? Do they preserve registers?

What is the view with Forth?

Forth (4GL) aims at the same ends as C (although in a lot less friendly format) and adds a further advantage: dynamic

expansion of the language itself. I.e. in Forth, the language itself is not static, and the programmer is simultaneously

writing his own compiler. What makes it great is that Forth does not surrender the territory of any adjacent areas,

and does not exact as high a trade-off cost on either time or space. The way it does this is by an ingenious invention

--- the Forth engine.

This is what gets entered to allow Forth to run on a targeted chip.

To write this takes some effort, but once it is done, it is small enough that one could in principle enter this by hand,

boot strapping it.

The other view that Forth then takes is to ask why are the processors so complicated? Do we need such complex

processors?

mailto:assad.ebrahim@alum.swarthmore.edu

Computer Architecture & Programming – Using Debug – Part Eight July 2018
 Author: Assad Ebrahim
 assad.ebrahim@alum.swarthmore.edu

1

In C, this is not asked because the space and time trade-offs and the heaviness of the compilers and toolsets mean

that it becomes a tenet that faster and more memory is better and this is sold to those on the other side, who see

this as allowing them to not have to spend time optimizing (premature optimization mantra...)

Now this is a very interesting viewpoint.

Imagine a Forth chip and coding in Forth.

Two highly targeted systems. You wouldn't need much else. And the rest would be all application energy.

But what would you need to make this happen?

Vision and dictat. I.e. the free hand of economics would have to be controlled for the overall interest.

So this is this unfortunate limitation of economics --- it searches for local optimizations initially, but as competition

gets more fierce, sub-optimal positions are taken and energy is spent maintaining those because of the power of the

vested interests. So it is neither locally optimal not globally optimal.

Regulation can try to go for local optimality, but it can never get global optimality if this is in a different part of the

design space. Not without dictat.

That is then why we have nations and tribes -- and why there is revolution, evolution, and overthrowing of old

paradigms by new ones. It takes disruption.

Who does the disrupting?

Someone with the discipline and vision to make it apparent to all that there is a better way, i.e. the peaceable

demonstration.

So it is not about converting through preaching, or legislation, or mandate, but DO IT, make it work, demonstrate it,

and it if really is better, then it will disrupt.

Sometimes you need a killer app to do that.

This ends the DEBUG module of the course.

(The overall course has 4 modules: starts with DEBUG, moves to Assembly, then C, and finally Forth)

mailto:assad.ebrahim@alum.swarthmore.edu

	Intro - Debug 0
	Debug 1
	Debug 2
	Debug 3
	Debug 4
	Debug 5
	Debug 6
	Debug 7
	Debug 8

